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The effect of skewing the two free-streams on the development of a compressible mixing layer was
studied. The results of stability analysis show that skewing has the simultaneous effect of increasing
the effective velocity ratio, which is a destabilizing effect, and increasing the effective convective Mach
number, which is a stabilizing effect.

Direct numerical simulations of a spatially-evolving mixing layer with equal velocity magnitude
but skewed in opposite directions were conducted to study the non-linear evolution. Three skewing
angles were considered: 30°, 60°, and 90°. For the low skewing angle cases, the mixing layer rolls
up and forms a pattern of streamwise vortices. For the 90° case, vortex breakdown was observed,
which significantly enhances the mixing. For high Mach numbers, oblique waves are more unstable
which form a pattern of streamwise vortices with increasing spanwise undulation.

The skewing effect can be practically realized by adding swirl to a circular mixing layer. Results
of stability analysis show that adding a small amount of swirl near the center of the mixing layer
significantly enhances the maximum amplification rate, and the enhancement sustains under com-
pressible conditions. The disturbance energy budget shows that a significant of disturbance energy
is extracted from the shear in the swirl component.
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Summary

This report summarizes the findings of the research conducted under grant AFOSR-
91-0374 from the Air Force Office of Scientific Research, Air Force Materiel Command,
USAF. The bulk of the research effort pertains to the original topic of skewed compressible
mixing layers. This research is summarized in the main report to follow. Research was
also initiated, during the last year of the grant period, on a second topic dealing with the
instability of curved compressible mixing layers. Results from this effort are summarized
in the appendix to the main report.



FINAL REPORT
A NUMERICAL INVESTIGATION OF SKEWED MIXING LAYERS

Sanjiva K. Lele and Ganyu Lu
Mechanical Engineering Department, Stanford University
Stanford, California 94305

1 Introduction

A mixing layer as a prototypical simple flow is
of fundamental importance in industrial applica-
tions. Detailed understanding of the physics of
compressible mixing layers is essential in devel-
oping new turbulence and mixing models. Re-
cent interest in high-speed flow and supersonic
combustion ram jet (scramjet) has been moti-
vating the study of compressible mixing layers.
In a scramjet engine the time taken to mix the
fuel and oxidizer is very short and must occur

within the combustion chamber for the heat re- .

lease to generate thrust. However, experimental
and computational studies have shown that mix-
ing layer flows become more stable under highly
compressible conditions. The reduced mixing,
in turn, can cause inefficient combustion in the
scramjet engine and other propulsion systems.
Good mixing between the two streams is crucial
in designing these systems.

In many practical situations a mixing layer is
more complex than the frequently studied ideal-

~ ization of a plane mixing layer. For example, the

initial spreading of a swirling jet involves three-
dimensional mixing layers. In the separated flow
over a leading edge of a slender delta wing at
incidence, the flow separates near the leading
edge and forms a mixing layer with non-parallel
streams. This mixing layer rolls up into a core of
high vorticity (Hall 1966). In the flow field aris-
ing in a lobed mixer where the upper and lower
streams are alternatively turned into the lobed
troughs, the two streams are locally non-parallel
and form an array of counter-rotating streamwise
vortices near the mixer. Most three-dimensional

boundary layer separations involve complex mix-
ing layers. In these practical flows, however,
the effects of pressure gradients, flow curvature
and three-dimensional mean flow occur simulta-
neously, making it difficult to interpret the indi-
vidual effects. A skewed mixing layer, i.e. mixing
layer between two streams of different directions
and velocity magnitudes, allows a study of the
skewing effect in isolation. .

Skewing the two streams can enhance the mix-
ing. This effect was observed in experiments
(Hackett & Cox 1970; Griindel & Fiedler 1992;
Fric 1995) and in linear stability analyses (Grosch
& Jackson 1991; Lu & Lele 1993a, 1993b). This
work aims to understand the mechanism of mix-
ing enhancement by skewing and offers param-
eters which can be used to assess the skewing
effect. The effect of adding swirl to a circular
mixing layer, as an example for the practical re-
alization of the skewing effect, is also studied by
means of stability analysis. This project focused
on the following questions:

(1) What is the effect of skewing on the incom-
pressible mixing layers?

(2) Will the same effect be sustained in com-
pressible mixing layers? What is the com-
pressibility effect?

(3) What is the effect of skewing on the vortical
structures that develop in the mixing layer?

(4) How can the skewing effect be exploited in
a practical geometry?
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Figure 1: Schematic of a skewed mixing layer.

2 Linear Stability Analysis

A skewed compressible mixing layer is the shear
layer between two streams of different velocity
magnitudes and directions and, in general, dif-

ferent temperatures (Figure 1). The Cartesian

coordinates (z,y,z) are chosen so that the y-
coordinate is normal to the layer and the 2-
coordinate is along an assumed homogeneous di-
rection for the mean flow. The z-direction is
also called the streamwise direction, and the z-
direction the spanwise direction. Physically the
homogeneous direction spans across a splitter
plate which separates the two free-streams. The
mean pressure is assumed to be uniform and the
fluid is taken to be a perfect gas with constant
specific heats.

The mean flow is governed by the three-

dimensional boundary-layer equations and can be
reduced to the sum of a two-dimensional shear
flow and a uniform flow.

The flow variable can be decomposed into its
mean and a disturbance:

f = F+Real {f(y) expli(oz + By — wt)]} (1)

where the overbar denotes a mean quantity,
which is taken from the similarity solutions. In
the equation, f is the complex eigenfunction de-
pending only on y, w is the frequency, and a and
{3 are the wavenumbers in the streamwise (z) and
spanwise (z) directions respectively. In the spa-
tial problem, disturbances grow in space and not
in time, so w is real and both o and 3 are complex
for a general perturbation. The imaginary parts
of wavenumbers can be re-expressed in terms of



the spatial amplification rate k and the amplifi-
cation angle o

Qj = —KCOS 7, Bi = —ksino (2)

The subscripts i denote the imaginary part of a
complex number.

In a skewed mixing layer, the existence of the
cross flow (@ # 0) makes the mean flow three-
dimensional. The splitter plate edge, due to its
receptivity behavior, may introduce disturbances
which are periodic in the z-direction. In this case
the disturbances do not amplify for z — +oo
or 0 = 0. Therefore, the spatial amplification
rate is —a;. If —a; > 0 and Briggs’ criterion
for amplifying waves (Briggs 1964) is satisfied,
the disturbance is spatially amplifying. Further
downstream of the splitter plate, this assump-
tion (¢ = 0) does not necessarily hold. From the
study of asymptotic growth of disturbances from
a spatially compact source (Lu & Lele 1993b), we
found that the disturbances grow along the mean
convection direction, which will be defined later.
Therefore, in this study we align the convection
direction with the z-direction in the mean flow,
so that the stability analysis results are valid in
both near and far field.

From both experiments and linear stability
analysis it was found that the growth rate of a
plane mixing layer can be estimated by using sim-
ple combinations of the free-stream quantities.
Such parameters are defined below and their ef-
fectiveness to scale the maximum amplification
rate of the skewed mixing layer is demonstrated.

For plane incompressible mixing layers, the
convection velocity U, can be estimated by

_Vhtl: )
VT +1

and the growth rate of a plane mixing layer can

be estimated by the ratio of the velocity differ-

ence AU to the convection velocity U,

_ A_U_ _ (1 _U2)(\/E+1) (4)
U VT4 U

For skewed mixing layers, the convection velocity
(Ue, We) can be similarly estimated by

VT2 cos ¢y + Uy cos ¢,
VT2 + 1

U.

A

U. (5)
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Figure 2: Comparison of the normalized maxi-
mum amplification rate Rs with the normalized
effective velocity ratio Ry as a function of the
skewing angle ¢ for incompressible skewed mix-
ing layer with U; = 0.5and T, = 1.

_ V/T;sin ¢y + Uz sin ¢,
We = VTl (6)

The velocity difference is that of the effective
shear given by

AU = /1 - 2Uscos ¢ + U3 (7
The effective velocity ratio may be defined as
AU
" U,coso + W, sino (8)

where o is the direction of growth. If we require
W, = 0, i.e. the mean convection direction is
aligned in the z direction, then it follows from
(6) that

_ UzsinqS
VT3 + Uy cos ¢

This is different from our earlier work reported
in Lu & Lele (1993) where ¢; = 0 was used and
results were restricted to ¢ = 0. For the present
mean flow, ¢ is naturally zero. The number of de-
grees of freedom is reduced to two: w and 8. The
effective velocity ratio is compared with the max-
imum amplification rate from the stability anal-
ysis of the incompressible mixing layers in Figure
2. For results presented, Uy = 0.5, T3 = 1 and
M; = 0. In this figure the skewing effect on the

tan (]51 =

(9)



amplification rate is isolated by plotting the max-
imum amplification rate, which is normalized us-
ing the corresponding value of an unskewed mix-
ing layer with the same Mach number, velocity
ratio and temperature ratio:

_ |ailmax(Ml, U21 T2a ¢)

Reo =
$ 7 Jotilmax(Mi, Ua, T2, 0)

(10)

Figure 2 also shows the normalized effective ve-
locity ratio R), normalized in the same way as
(10). The maximum amplification rate increases
with the skewing angle. The maximum amplifi-
cation rate is proportional to the effective veloc-
ity ratio. The increase in the maximum amplifi-
cation rate with skewing can thus be estimated
from the increase in the effective velocity ratio.
Results for different velocity ratio and tempera-
ture ratio also show similar agreement (Lu & Lele
1993a).

The free-stream Mach number M; does not
provide a good measure of the compressibility in
mixing layer. It is the velocity difference between
the two streams that matters. The decompo-
sition of the mean flow into the sum of a uni-
form flow and a two-dimensional shear flow leads
to the definition of the effective convective Mach
number for the skewed mixing layer as the con-
vective Mach number of the effective shear. The
definition of a convective Mach number which is
frequently used for a plane mixing layer is (for

71 = 72)

M AU, \/1 ~2Uzcos ¢ + U2
C—a1+a2_ 1+\/T2‘

where a; and a; are the sound speeds of the fast-
moving and slow-moving streams respectively.
This definition was used to collapse the avail-
able growth rate data from experiments (Bog-
danoff 1983; Papamoschou & Roshko 1988; also
see Dimotakis 1991 for a review). Sandham and
Reynolds (1990) also use this definition to rescale
their linear stability results.

For compressible mixing layers, when the skew-
ing angle increases, although the free-stream
Mach number is fixed, the effective convective
Mach number M is increased. Since compress-
ibility stabilizes the mixing layer, the skewing ef-

M; (11)

Rs

Figure 3: The normalized maximum amplifica-
tion rate Rs as a function of the skewing angle
¢ for skewed mixing layer with U; = 0.5, To=1
and different Mach numbers.
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Figure 4: The normalized maximum amplifica-
tion rate R¢ as a function of the effective con-
vective Mach number M for skewed mixing layer
with U; = 0.5, T3 = 1 and different Mach num-
bers. (Solid line is the normalized maximum am-
plification rate of the plane compressible mixing
layer with U; = 0.5, T» = 1.)



fect on the amplification rate is expected to de-
crease.

Figure 3 shows the normalized maximum am-
plification rate Rg as a function of the skewing
angle ¢ for U; = 0.5, T, = 1 and M; = 0, 1.6
and 3.2. For compressible mixing layers, skew-
ing still increase the maximum amplification rate,
but the enhancement is decreased as the free-
stream Mach number M; is increased.

To scale this compressibility effect, the max-
imum amplification rate of the compressible
skewed mixing layer is normalized using -the
results from the corresponding incompressible
skewed mixing layer

— || maz(M1, Uz, T2, ¢)
'ailma:v(oa U21 T21 ¢)

Figure 4 shows the normalized amplification rate
R¢ of the compressible skewed mixing layer as a
function of the effective convective Mach number
Mg for U = 0.5 and T3 = 1 and different Mach
number M;. All data collapse to the values of
the plane compressible mixing layers (shown by
the solid line), indicating that the scaling (12) is
successful. The compressibility effect on skewed
mixing layers can be scaled using the effective
convective Mach number as the single parameter.

Since skewed mixing layers are three-dimen-
sional in nature, the assumption that the dis-
turbances grow along the mean convection di-
rection, which is also chosen as the streamwise
z-direction, needs to be verified. Disturbances
arising from a time-harmonic spatially-compact
source are studied. The asymptotic growth for
large z is analysed using the saddle point method.
The skewed mixing layers are compared with the
corresponding unskewed mixing layers. Distur-
bances arising from a spatially-compact source
grow in a wedge-shaped region centered at the
mean convection direction. This justifies the as-
sumption that the disturbances grow in the con-
vection direction. Detailed results from this anal-
ysis can be found in Lu & Lele (1996).

Rc¢ = Rc(M¢) (12)

3 Direct Numerical Simula-

tions

Direct numerical simulations of the three-
dimensional compressible Navier-Stokes equa-
tions are conducted. A particular subset of the
skewed compressible mixing layers is studied in
detail: the mixing layer between two streams
with equal velocity magnitudes but skewed in op-
posite directions. To assess the skewing effect, we
compare results for different skewing angles while
fixing other mean flow parameters.

Time advancement is explicit and carried out
by a compact-storage third-order Runge-Kutta
scheme (Wray 1986). Only two storage locations
are needed for each substep, and three evalua-
tions of the right hand side of the equations are
needed.

The spatial derivatives are discretized with the
sixth order Padé finite difference scheme (Lele
1992). Thompson’s non-reflecting boundary &on-
ditions (Thompson 1987,1990) are used in the
inhomogeneous directions (z- and y-directions).
The code is written in the VECTORAL language
(Wray 1988), and implemented on the Cray Y-
MP C90 at NASA-Ames Research Center. _

The laminar compressible boundary-layer solu-
tions show that the u-velocity is uniform, which
is also the mean convection velocity Uz, and the
effective shear is along the spanwise z-direction
The inviscid stability analysis shows that a sta-
tionary spanwise (z) wave is the most unstable
wave for low convective Mach numbers. The
instability wave grows along the mean convec-
tion direction due to the shear instability, and
the non-linear evolution (roll-up) of the distur-
bance forms a pattern of streamwise (z) vor-
tices. The existence of subharmonic wave makes
neighboring fundamental vortices to undergo a
pairing process to form streamwise vortices of a
larger scale. Such helical vortex structures have
been observed in the flow visualizations of in-
compressible skewed mixing layers conducted by
Griindel & Fiedler (1992). For high convective
Mach number, a pair of oblique waves is most
unstable. A pair of horseshoe vortices was ob-
served to develop in a temporal simulation by



Table 1: Simulation parameters

¢ | M| A | Mg | |oglfun | |@ilsub | Lz | Lz | Afun | Asub mesh size
30°[0.6[054]016] 020 | 0.08 [7.85] 80 0.01 |0 251 x 189 x 65
30°]0.60.54]016] 0.10 | 0.08 | 14.7[100] 0.01 | 0.01 | 251 x 189 x 81
60°]06[1.16]030f 020 | 0.15 [7.85] 65 0.02]0 251 x 189 X 65
90° | 0.6]200]042] 031 | 023 [7.85] 50 0.05]0 251 x 189 x 65
90° [ 0.6 | 2.00 | 0.42| 0.31 | 0.23 | 14.7| 60| 0.03 | 0.01 | 241 x 189 x 81
90° | 0.6 | 2.00 | 0.42| 0.31 023 | 14.7| 80 0.030.03 | 341 x 189 x 81
90° [ 1.2 2.00 [ 0.83 | 0.16 14.7] 60 0.02 251 x 189 x 81

Sandham & Reynolds (1989). In the high Mach
number skewed mixing layer considered here, a
pair of streamwise vortices with increasing span-
wise undulation forms.

The boundary layer solutions are used as mean
flow profiles at the inflow. Perturbations are
added at the inflow in the form of eigenfunctions
of unstable waves from linear inviscid stability
analysis.

Three skewing angles are selected for detailed
studies, i.e. ¢ = 30°, 60° and 90°. The related
parameters are shown in Table 1. A free-stream
Mach number M = 0.6 is chosen for the low com-
pressibility cases. The temperatures of the two
streams are the same: 75 = 1. The Reynolds
number is chosen small enough so that the flow
can be fully resolved and large enough to capture
the inviscid nature of the instability. From pre-
vious experience on direct simulations of plane
mixing layers the Reynolds number is 500 based
on the inflow vorticity thickness and mean free-
- stream velocity. The Prandtl number is constant
and chosen as 0.7, and the Schmidt number for
the passive scalar is unity. As the skewing an-
gle increases, the amplification rate of the most
unstable wave |a;|max also increases and is pro-
portional to the effective velocity ratio A (Table
1). The domain width L,, which matches the
wavelength of the most unstable wave, is used.
For Aqp # 0, the domain size L, contains one
wave length of the subharmonic. The wavenum-
bers 8 for the most unstable waves for M; = 0.6
occur to be approximately the same for different
skewing angles, while for My = 1.2, § is approxi-

mately half as much as those for My = 0.6. The
streamwise length of the simulation domain L is
also shown in the table; it is chosen to allow the
spatial development of the vortical structures to
be completed within the computational domain.
The transverse length of the simulation domain
L, is the same for all cases and equal to 18 times
the inflow vorticity thickness. Doubling the free-
stream Mach number to M = 1.2 allows a study
of the compressibility effect, which is the last case
in Table 1. More details of the numerical method
can be found in Lu & Lele (1996).

Since stationary spanwise wave (the most un-
stable wave) is used as the inflow perturbation,
the inflow conditions do not force unsteady per-
turbations and a steady state is expected down-
stream. Figure 5 shows the time history of pres-
sure at different z-locations along the center of
the vortex core. The flow field is initialized
using the same eigenfunctions as those used in
the inflow perturbation without accounting for
any spatial amplification. In the early stage
the flow downstream evolves in time. At any
given z-station, the flow remains unaltered until
spatially-amplified disturbance reaches the cho-
sen station. Near the inflow the pressure mono-
tonically decreases, reaching its steady state.
Downstream the pressure decreases at the begin-
ning and then increases to its steady state. The
u-velocity decreases a small amount and then in-
creases and successively becomes constant. The
whole flow field reaches a steady state after
an initial transient of less than one and a half
flow-through times (one flow-through time equals
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Figure 5: Time history of pressure at different z-
locations of the center of the streamwise vortex
.core for M = 0.6 and ¢ = 30° with only funda-

mental disturbance.

Figure 6: Vortex lines (a) and streamlines (b) for
M = 0.6 and ¢ = 30° with only fundamental
disturbance. (Tic marksin z, y and z are at 8, 2
and 1 4., intervals.)

138). The following results are at the steady
state.

The overall vortical structure for the 30° skew-
ing case is shown in Figure 6 with vortex lines
and streamlines starting from the inflow plane at
y = 0. As the disturbance grows due to the shear
instability, the streamwise vorticity is collected
into a streamwise roller. The layer of vorticity at
the inflow rolls up, and forms a round streamwise
roller. The effective shear, which is along the z-
direction, makes the roller elliptic. The vortex
lines and streamlines are helically twisted along
with the roll-up of the mixing layer in the (y, z)-
plane. Due to the periodic boundary condition
in the z-direction, the single vortex core, in fact,
represents a spanwise periodic pattern of stream-
wise vortices.

At large skewing angles, the cross-shear ve-
locity difference is larger than the mean convec-
tion velocity, so the associated streamwise vortic-
ity is strong. Figure 7 shows some vortex Hnes
and streamlines starting from the inflow plane at
y = 0. For some distance downstream of the in-
flow the vortex lines and streamlines are helically
twisted similar to the lower skewing angle cases,
except that the twisting is much faster. Beyond
a particular z-location, instead of continuing the
twisting, the concentrated vortex tube suddenly
bulges out, suggesting that vortex breakdown has
occurred. Inside the breakdown bubble, the vor-
ticity is very small. Downstream of the break-
down, the streamlines stop twisting and become
straight.

Figure 8 shows the time history of pressure at
different z-locations for the 90° case. The flow
through time for this case is 59, and the simu-
lation has gone through about four flow through
times. The flow reaches a steady state upstream
of the vortex breakdown. Downstream of the
breakdown the flow is unsteady.

From stability analysis, we know that skewing
the two streams increases the maximum amplifi-
cation rate. The mixing layer growth rate can be
measured using the momentum thickness. Figure
9(a) shows the momentum thickness d,, as a func-
tion of z for ¢ = 30°, 60° and 90°. As the skewing
angle increases, the spreading rate in the momen-
tum thickness is significantly enhanced. For the
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Figure 7: Vortex lines (a) and streamlines (b) for
M = 0.6 and ¢ = 90° with only fundamental ]
disturbance. (Tic marks in z, y and z are at 5, 2 60 80 100
and 1 4§, intervals.
1.0 Figure 9: Momentum thickness as a function of z
2% (a) and Az (b) for M = 0.6 and different skewing
0.91 Txn2 angles with only fundamental disturbance.
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Figure 8: Time history of pressure at different z- i i ]
locations of the center of the streamwise vortex 0 20 40 60 80
core for M = 0.6 and ¢ = 90° with only funda-
mental disturbance.

Figure 10: Product thickness with Cy = 0.2 and
C1 = 0.8 for M = 0.6 and different skewing an-
gles with only fundamental disturbance.



90° case, the second jump in &, corresponds to
the vortex breakdown. The increase in spreading
rate due to skewing is primarily due to the in-
creased effective velocity ratio A. This is demon-
strated in Figure 9(b) by plotting the momentum
thickness 6y, against z times A, which effectively
collapses the three curves. The increase due to
vortex breakdown remains unaccounted in this
scaling.

A measure of the mixing between the two
streams is the product thickness calculated from
a conserved passive scalar with value 0 and 1 in
the lower and upper free-streams. The product
thickness is defined as

_area(C; < c < ()

by = = (13)

where area(C < ¢ < C4) is the area on the (y, 2)-
plane where ¢ has a value between C; and C;.
The (y, z)-plane is divided into small cells cen-
tered at the nodes. The area(C; < ¢ < ()
is computed by summing the areas of the cells
whose nodes satisfy the condition Cy < ¢ < Cj.
A comparison of the product thickness among the
three cases is shown in Figure 10. Skewing in-
creases the growth rate of the product thickness.

To assess the effect of the vortex breakdown
on the mixing, we compare the 90° case to the
corresponding two-dimensional temporal simula-
tion, which forces the vortex breakdown not to
occur. Figure 11 shows the comparison of the mo-
mentum thickness and product thickness, while
the temporal evolution is converted to the spa-
tial evolution using the mean convection velocity.
Near the inflow the two curves agree. Beyond
z = 30 the spatial evolution differs markedly
from the temporal case. As is evident from Fig-
ure 11, the vortex breakdown significantly en-
hances the mixing.

Other DNS cases which explore the impact of
the subharmonic disturbances on the nonlinear
growth, and the high compressibility case are re-
ported in Lu & Lele (1996). The existence of the
subharmonic waves makes the streamwise vor-
tices undergo a helical pairing process and form
vortices of larger size. For high Mach numbers,
oblique waves are more unstable which form a
pattern of streamwise vortices with increasing

Sm

S

Figure 11: Comparison between the spatial simu-
lation and the corresponding temporal simulation
for M = 0.6 and ¢ = 90° with only fundamental
disturbance: (a) momentum thickness (b) prod-
uct, thickness with C; = 0.2 and C; = 0.8.
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Figure 12: Schematic of a swirling mixing layer.

spanwise undulation in the non-linear regime.

4 Swirling Mixing Layer

An experimental realization of skewed mixing
layers requires a wide splitter plate. Even then
the overlying portion of the two skewed streams
decreases laterally as the flow proceeds down-
stream. A configuration which avoids this dif-
ficulty is a circular mixing layer. A swirl compo-
nent is added within the mixing layer, as shown
in Figure 12. This can be realized in experi-
ments by turning vanes of small height affecting
only the boundary layer of a jet nozzle. Unlike
skewed mixing layers, the swirling mixing layer
contains a cross flow component in form of the

the swirl velocity, which decays on both sides,
and there are two inflection points in the mean
profile of the swirl component. The peak value
of the swirl component decreases downstream by
viscous diffusion and due to nonlinearity. The
mean flow is solved numerically using the com-
pressible boundary-layer equations in cylindrical
coordinates. Stability analysis is performed on
the mean flow to study the effect of swirl.

The cylindrical coordinates (z,r,6) are cho-
sen so that the mixing layer flows along the z-
direction, and r and @ are the radial and az-
imuthal coordinates respectively.

The numerical method to solve the mean flow
boundary-layer equations is adopted from An-
derson, Tannehill & Pletcher (1984). Due to



Table 2: Parameters for the stability analysis of
swirling mixing layers. Note values at the spatial
location z listed in the table are used to define
the non-dimensional parameters.

case Ml Wmax R 65 S ";bmax
MOOWO00 | 0 0 10 0 0°
MOOW25 | 0 025 (101 0.05 | 19°
MOOWS50 | 0 0.50 |10 0.98 | 0.11 ] 35°
MOOW40 | 0 0.40 8098 |0.09|29°
MOODS2 | 0 049 |10 2 0.22 | 36°
M16W00 | 1.6 | 0 10 0 0°
M16W55 | 1.6 | 0.55 | 10| 0.96 | 0.11 | 37°
M32W00 ] 3.2 |0 10 0 0°
M32W57 [ 3.2 | 0.57 | 10 | 0.94 | 0.13 | 40°

the parabolic nature of the equations, z can be
treated as the advancing variable. The Crank-
Nicholson method is used, which has second-
order accuracy with respect to both independent
variables z and r.

The mean flow parameters of swirling mixing
layers include: the radius of the round mixing
layer R, the thickness of the swirl dg, the maxi-
mum azimuthal velocity wpnax, the Mach number
M,, the velocity ratio U, and the temperature
ratio T3. In all cases reported here, U; = 0.5 and
T2 = 1. To keep the curvature effect small, the
radius R at the reference station is chosen as 20.

The flow variables can be decomposed into
their means and a disturbance:

f=f+Real {f(r) expli(kz + mé — wt)]} (14)

where k the streamwise wave number, and m the
azimuthal mode number and should be an inte-
ger. Spatial stability problem is considered here,
where k is complex with —k; the amplification
rate.

Table 2 lists the mean flow parameters used in
the stability analysis. The degree of swirl can be
characterized by the swirl number

I5° puwridr

S =

B R[Zp (u2 - %uﬂ) rdr (15)
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However, if there is coflow or U, # 0, the inte-
gral in the denominator is infinite. Using u — U,
to substitute u in (15) could avoid the difficulty.
Another assessment of the degree of swirl is the
helix angle of the velocity vector relative to the

z-axis
w
¥ = tan™! (-——)
u

This angle compares the local swirl velocity and
axial velocity. The thickness of swirl dg is com-
parable with the vorticity thickness of the mixing
layer unless otherwise specified. The magnitude
of swirl velocity is basically described by a sin-
gle parameter wyax. In the stability analysis, the
mean flow obtained from the numerical solutions
of the boundary-layer equations are fitted with
a cubic spline interpolation. All the mean flow
profiles can be found in Lu & Lele (1996).

The results for a non-swirling incompressible
mixing layer, which serves as the baseline case,
is shown in Figure 13 with the spatial amplifi-
cation rate —k; as a function of the frequency w
for different m. The spatial amplification rate
—k; has maximum value at m = 0, which is an

(16)

‘axisymmetric mode. Overall —k; decreases as m

increases. This is similar to plane mixing layer
where two-dimensional disturbances are more un-
stable than oblique disturbances. All values of m
were tracked in the stability problem. Only a
sample of these are plotted for clarity.

Increasing swirl (wmax = 0.5) yields results
shown in Figure 14. The amplification rate —k;
is enhanced further for small m. The most un-
stable wave occurs at m = 17 and its frequency
is small. The unstable frequency region moves
towards negative frequencies, which implies that
disturbances with negative frequencies are more
unstable.

For non-swirling incompressible mixing layer,
shear instability in the axial velocity is the only
mechanism for disturbance growth. For swirling
mixing layer, the azimuthal velocity w increases
and then decreases with r. The decrease of
rw with r makes the flow centrifugally unsta-
ble. This mode is shown in Figure 15. For
small amount of swirl, the amplification rate of
this mode is smaller than the Kelvin-Helmholtz
mode. For larger swirl, the amplification rate of
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Figure 13: Spatial amplification rate —k; as a
function of frequency w for non-swirling incom-
pressible mixing layer (Case MOOWO00: wyyax = 0,
M; =0 and R = 10).
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Figure 14: Spatial amplification rate —k; as a
function of frequency w for swirling incompress-
ible mixing layer (Case MOOW50: wpmay, = 0.50,
M; =0 and R = 10).
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Figure 15: Spatial amplification rate —k; as
a function of frequency w for swirling incom-
pressible mixing layer (centrifugal mode; Case
MOOWS50: wmay = 0.50, M; = 0 and R = 10).

the centrifugal mode is comparable to the Kelvin-
Helmholtz mode. For the same m, a negative
frequency has larger amplification rate than the
corresponding positive frequency (same magni-
tude), indicating that counter-rotating waves are
more unstable.

For a free-stream Mach number M; = 3.2, the
convective Mach number is 0.8. A pair of equal
and opposite oblique waves is most unstable for
a plane mixing layer. Figure 16 shows the spa-
tial amplification rate —k; as a function of the
frequency w for different m for the non-swirling
compressible mixing layer. Helical modes (m =
+4) becomes most unstable instead of an ax-
isymmetric mode (m = 0), which is similar to
the behavior in plane mixing layers. Also note
that the maximum amplification rate is signif-
icantly smaller than the corresponding incom-
pressible case. Adding similar amount of swirl
(Wmax = 0.57), Figure 17 shows the spatial am-
plification rate —k; as a function of the frequency
w for different m for the swirling compressible
mixing layer. Although the maximum amplifi-
cation rate is somewhat smaller than the corre-
sponding incompressible case, it is much larger
than the corresponding non-swirling compress-
ible case. In contrast, at this Mach number skew-
ing has almost no effect on the maximum ampli-
fication rate.
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Figure 16: Spatial amplification rate —k; as a
function of frequency w for non-swirling incom-
pressible mixing layer (Case M32W00: wpax = 0,
M; =3.2and R = 10).
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Figure 17: Spatial amplification rate —k; as a
function of frequency w for swirling incompress-
ible mixing layer (Case M32W57: wpax = 0.57,
M; = 3.2 and R = 10).

5 Conclusions

This work has been concerned with a numerical
study of the skewed mixing layer and swirling
mixing layer. The methods used were linear in-
viscid stability analysis and direct numerical sim-
ulation of the compressible Navier-Stokes equa-
tions. Stability analysis was used to examine the
growth of small disturbances. To study the non-
linear behavior, full Navier-Stokes equations were
solved. An explicit Runge-Kutta scheme, with
the spatial derivative evaluated by a compact
sixth-order finite difference scheme was used. A
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particular subset of skewed mixing layers was
simulated: mixing layer between two streams
with equal velocity magnitude but skewed in op-
posite directions. The conclusions from the study
are grouped into three main areas: stability anal-
ysis of the skewed mixing layer, direct numerical
simulations of the skewed mixing layer and sta-
bility analysis of the swirling mixing layer.

Stability Analysis of the Skewed Mixing
Layer:

o Skewing increases the maximum amplifica-
tion rate. The enhancement can be scaled by
the effective velocity ratio. This concept is
derived from the decomposition of the mean
flow of the skewed mixing layer into a two-
dimensional shear flow (effective shear) plus
a uniform flow. The effective velocity ratio
is the ratio between the velocity difference in
the effective shear and the mean convection
velocity.

o For compressible mixing layers, skewing in-
creases the effective velocity ratio, which is
a destabilizing effect, and also increases the
effective convective Mach number, which is
a stabilizing effect. The effective convective
Mach number is the Mach number for the ef-
fective shear. As a result, the enhancement
of the maximum amplification rate by in-
creasing the effective velocity ratio is dimin-
ished by the increased effective convective
Mach number. The compressibility effect is
scaled by the effective convective Mach num-
ber.

e The growth of disturbances arising from a
spatially-compact time-harmonic source is
examined to justify the assumption that
the spatial amplification direction is along
the mean convection direction. The distur-
bances from a spatially-compact source grow
in a wedge-shaped region centered in the
mean convection direction. At low Mach
numbers, the propagation direction is close
to the effective shear direction, whereas at
high Mach numbers, the disturbance propa-
gates in a direction oblique to the effective



shear direction. In both cases the distur-
bances are amplified along the mean convec-
tion direction.

Direct Numerical Simulations of the

Skewed Mixing Layer:

e The low Mach number simulations confirm
the stability results that the enhancement
of the mixing-layer spreading rate can be
scaled by the effective velocity ratio. For
the particular flow simulated, a stationary
spanwise wave is most unstable, which forms
a pattern of streamwise vortices. The ex-
istence of subharmonic waves makes those
streamwise vortices undergo a helical pair-
ing process and form vortices of larger size.
For small skewing angle, these vortical struc-
tures are comparable to those obtained in a
two-dimensional temporally-evolving mixing
layer.

e For a large skewing angle, vortex breakdown
is observed in the streamwise vortices. Vor-
tex breakdown further enhances the mixing
layer spreading rate and the mixing.

e For high Mach numbers, oblique waves are
more unstable which form a pattern of
streamwise vortices with increasing spanwise
undulation in the non-linear regime. The
mixing layer spreading rate and mixing mea-
sured by the growth of product thickness is
reduced. This confirms the stability results
that the increased effective convective Mach
number stabilizes the flow.

Stability Analysis of the Swirling Mixing
Layer:

e Adding the swirl component near the center
of a circular mixing layer significantly en-
hances the maximum amplification rate. In
addition to the shear instability of the mix-
ing layer, two additional instability mech-
anisms are introduced: shear instability in
the swirl component, which has two inflec-
tion points, and centrifugal instability in the
outer part of the swirl component.
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e Unlike the skewing effect on compressible
mixing layer, the enhancement by adding
swirl component sustains under compress-
ible conditions. For the centrifugal mode,
the amplification rate is even larger for the
compressible flow than the incompressible
flow.

e Disturbance energy budget shows that a
large part of disturbance energy is extracted
from the shear in the swirl component, which
can provide only a limited reservoir of en-
ergy. Nonlinear simulations are necessary to
establish how much growth benefit results
from a given amount of swirl.
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Appendix
Inviscid Instabilities of a Curved Compressible Mixing Layer

Sanjiva K. Lele and Calvin Lui
Dept. of Mechanical Engineering
Stanford University, Stanford, CA 94305-4035.

The primary objective of this work was to evaluate the impact of mean streamline
curvature on the unstable modes of a compressible mixing layer. The aim was to obtain
a quick assessment of the potential destabilization offered by adding a moderate amount
of curvature to the mean flow of a compressible mixing layer. A schematic of the flow
considered is shown in figure Al. The mean flow profiles were taken as simple curve
fits to known behavior on the two sides of the mixing region. Systematic exploration
of the effect of streamline curvature and compressibility were carried out. Two main
conclusions were reached. Firstly, the addition of destabilizing curvature increases the
growth rate of the basic shear layer instability (Kelvin-Helmholtz mode). This increase is
modest under incompressible conditions (5 — 7% curvature increases the growth rate by
30—50%). However, the destabilization is only weakly affected by compressibility and since
the basic shear layer instability is strongly stabilized by compressibility (Papamoschou and
Roshko, 1988) the destabilization can have a large impact on the growth under compressible
conditions. For the case shown in figure-A2 for mixing between streams of velocity ratio
Uy /Uy = 0.5, p2/p1 = 0.5 and M; = 4.0, My = 0.38 the addition of 7% curvature increases
the growth rate of the basic K-H instability to about three times the growth rate without
curvature. Also evident in the figure is the large impact of even mild curvature (1%) on
the growth rate.

The second conclusion concerns the new modes of instability which destabilizing cur-
vature adds to the mixing layer, viz. the Taylor Gortler vortices which appear as modes
with zero temporal frequency but finite spanwise wavenumber. Figure-A3 shows that the
growth rate of the T-G modes is largely insensitive to compressibility, and further their
growth rate at modest levels of curvature is comparable or superior to the basic K-H mode
(which as noted earlier is also destabilized by curvature).

These two facts taken togather point to a significant mixing enhancement potential
offered by curving the mean streamlines in mixing under compressible conditions. This
result should be of significant interest to propulsion applications which seek such mixing
enhancement. Supersonic jet noise reduction and rapid mixing of engine/rocket plumes
are other areas where the current results would be of interest.
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Figure 3a: Incompressible Oblique Modes (M1=0.01)
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Figure A3: Compressibility Effects on Oblique Modes (I",=0.5, p,=0.5, 1/R=5%)

B: spanwise wave number



